Four-Wave Mixing Crosstalk Suppression Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals

نویسندگان

  • Haider Abd
  • Norashidah Md. Din
  • M. H. Al-Mansoori
  • F. Abdullah
  • H. A. Fadhil
چکیده

A new approach to suppressing the four-wave mixing (FWM) crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF) and dispersion-shifted fiber (DSF). The FWM power drastically reduced to less than -68 and -25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, -56 and -20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs) at the first channel were 2.57 × 10(-40) and 3.47 × 10(-29) at received powers of -4.90 and -13.84 dBm for SMF and DSF, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Data transmission in optical systems and increased transmission distance capacity benefit by using optical amplification wavelength division multiplexing (WDM) technology. The combination of four waves (FWM) is a non-linear effect in the wavelength division multiplex (WDM), when more than two wavelengths of light in a fiber launch will occur. FWM amount depends on the channel, the channel spaci...

متن کامل

Suppression of FWM Crosstalk on WDM Systems Using Unequally Spaced Channel Algorithms–A Survey

The phenomenon of an undesirable nonlinear optical effects degrade the system performance. In optical wave–length division multiplexing (WDM) systems employing dispersion shifted fibers, the crosstalk due to four–wave mixing (FWM) is one of the dominating degradation nonlinear optical effects. Generally, FWM crosstalk suppression can be achieved by using unequally spaced channel allocation meth...

متن کامل

Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications

Ring resonators have always been referred to as a highly flexible structurefor designing optical devices. In this study, we have designed and simulation a fourchannel optical demultiplexer using square photonic crystal ring resonator. The squarelattice constant for this purpose structure is used. The purposed structure has an averagecrosstalk, transmission coefficient, q...

متن کامل

Design of Four-Wave Mixing Frequency-Shift-Free Amplitude Regenerators

Frequency-shift-free all-optical amplitude regenerators based on fiber-four-wave mixing were investigated by means of simulations. These regenerators, comprised of two stages of highly nonlinear dispersion-shifted fiber, were designed using a heuristic procedure that implements a routine based on a genetic algorithm to optimize the device performance. A bit error rate improvement of up to four ...

متن کامل

Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling.

A technique for the frequency multiplication of microwave signals based on the combination of two optical nonlinear phenomena in a single nonlinear fiber is investigated. Multiple four-wave mixing is used to generate harmonics on an externally modulated optical carrier while polarization pulling through stimulated Brillouin scattering is used to filter the desired harmonics. Microwave signals i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014